RCH Achieves AWS Life Sciences Competency
Leading Cloud solutions exclusively for Life Sciences teams that accelerate discovery, optimize costs and ensure scalability and compliance in AWS.
The New Year is upon us and for most, that’s a time to reaffirm organizational goals and priorities, then develop a roadmap to achieve them. For many enterprise and R&D IT teams, that includes working with external consultants and providers of specialized IT and scientific computing services.
But much has changed in the last year, and more change is coming in the next 12 months. Choosing the right partner is essential to the success of your research and, in the business where speed and performance are critical to your objectives, you don’t want to be the last to know when your partner isn’t working out quite as well as you had planned (and hoped).
But what should you look for in a scientific computing partner?
This blog series will outline five qualities that are essential to consider … and what you should be measuring your current providers against throughout the year to determine if they’re actually adding value to your research and processes.
There are many different types of scientific computing consultants and many different types of organizations that rely on them. Life science researchers regularly perform incredibly demanding research tasks and need computing infrastructure that can support those needs in a flexible, scalable way.
A scientific computing consultant that works with a large number of clients in varied industries may not have the unique combination of knowledge and experience necessary to drive best-in-class results in the life sciences.
Managing IT infrastructure for a commercial enterprise is very different from managing IT infrastructure for a life science research organization. Your computing partner should be able to provide valuable, highly specialized guidance that caters to research needs – not generic recommendations for technologies or workflows that are “good enough” for anyone to use.
In order to do this, your computing partner must be able to develop a coherent IT strategy for supporting research goals. Critically, partners should also understand what it takes to execute that strategy, and connect you with the resources you need to see it through.
In the past, the process of scientific discovery left a great deal of room for trial and error. In most cases, there was no alternative but to follow the intuition of scientific leaders, who could spend their entire career focused on solving a single scientific problem.
Today’s research organizations operate in a different environment. The wealth of scientific computing resources and the wide availability of emerging technologies like artificial intelligence (AI) and machine learning (ML) enable brand-new possibilities for scientific discovery.
Scientific research is increasingly becoming a multi-disciplinary process that requires researchers and data scientists to work together in new ways. Choosing the right scientific partner can unlock value for research firms and reduce time-to-discovery significantly.
Best-in-class scientific computing partnerships enable researchers to:
If your scientific computing partner is one step ahead of the competition, these capabilities will enable your researchers to make new discoveries faster and more efficiently than ever before.
But finding out whether your scientific computing partner is up to the task requires taking a closer look at the quality of expertise you receive. Pay close attention to Evaluation Consideration #1: Life Science Specialization and Mastery and come back next week to read more about our next critical consideration in your computing partnership, the Ability to Bridge the Gap Between Science and IT.