RCH Achieves AWS Life Sciences Competency
Leading Cloud solutions exclusively for Life Sciences teams that accelerate discovery, optimize costs and ensure scalability and compliance in AWS.
How to Tell if Your Computing Partner is Actually Adding Value to Your Research Process: Service Model
Part Four in a Five-Part Series for Life Sciences Researchers and IT Professionals
If 2020 and 2021 proved anything to us, it’s that change is inevitable and often comes when we least expect it. The pandemic shifted the way virtually every company operates. While change can feel unnerving, it is important to make changes that better your work and your company.
The Life Sciences industry is no different. Whether your company shifted drastically in response to the pandemic or not at all, it’s still important to take a look at your business or team operations to see in what areas you can continue to improve. For teams conducting drug discovery, development or even pre-clinical workce such area that can often be improved is your external scientific computing support.
We’ve highlighted several items for teams to take into consideration when evaluating their current partners. So far in our five part blog series we’ve taken a look at following three considerations:
In this installment, we take a deeper look at Consideration #4: A Service Model that Fits Research Goals.
Consideration #4: A Service Model that Fits Research Goals
It’s no surprise that every company is likely to have different research goals. A one size fits all approach is not an acceptable strategy. Do you know what sets your current partner apart from their competitors? Do they offer a commodity service, or is there a real and tangible value in what they deliver, and how they deliver it? Your partner’s service model can make an enormous difference in the value you get from their expertise.
There are two models that life science organizations typically use; computing partners operating under a staff augmentation model or a Managed Service providers model. It is no surprise that these two models work in very different ways and in turn offer very different results for the companies that use them.
IT staff augmentation may allow your organization to scale its IT team up or down based on current needs. This can help scientific IT teams retain project control and get short-term IT support on an as-needed basis, but it often requires the researchers to obtain, deploy and manage human resources on their own. This can be time consuming and tedious for the organization. Often, outcomes related to staff augmentation services are guided by rigid, standardized service level agreements that prioritize process over results. Unlike in many other industries, these standards can be limiting in the dynamic world of scientific research and discovery, preventing teams from appropriately adapting their scope as project needs and goals change.
Managed IT services, on the other hand, offer a more balanced approach between operations and project management. This allows research teams to save time they would otherwise spend managing IT processes, and it enables the delivery of specialized services tailored to your team’s specific needs. And, unlike the staff augmentation model that provides an individual resource to “fill a seat,” a managed services model is based on a team approach. Often a diverse team of experts with a range of specialization work collaboratively to find a solution to a single issue. This shifts the focus to prioritize outcomes and enables for a fluid and nimple approach, in a cost and time efficient manner. The end result is better Outcomes for all.
How Your Computing Partner’s Service Model Influences Research Success
Meeting your research goals requires efficiency and expertise and when comparing the staff augmentation model versus the managed IT model, you can see the clear differences. When choosing the managed IT model you’re going to be offered a level of continuity and efficiency that the staff augmentation model can not compete with. When your organization is pressed for time and resources, having a managed IT model allows you to focus and expedite your work, ultimately accelerating the journey toward your discovery and development goals.
When you work through evaluating your current partners, be sure to consider whether they operate with a service model that fits your research and development needs and goals.
And stay tuned for the final installment of this series on how to evaluate your external scientific computing resources, in which we’ll discuss our last but certainly not least important consideration: Dedication and Accountability.